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Abstract
We begin higher Waldhausen K-theory. The main sources for this talk are Chapter 8 of Rognes,

Chapter IV.8 of Weibel, and nLab. For the original development, see Friedhelm Waldhausen’s Algebraic
K-theory of spaces (1985), 318-419.

Remark 1. Let C be a Waldhausen category. Our goal is to construct the K-theory K(C ) of C as a based
loop space ΩY endowed with a loop completion map ι : |wC | → K(C ) where wC denotes the subcategory of
weak equivalences. This will produce a function ob C → |wC | → ΩY . Further, we’ll require of K(C ) certain
limit and coherence properties, eventually rendering K(C ) the underlying infinite loop space of a spectrum
K(C ), called the algebraic K-theory spectrum of C .

Definition. Let C be a category equipped with a subcategory co(C ) of morphisms called cofibrations. The
pair (C , coC ) is a category with cofibrations if the following conditions hold.

1. (W0) Every isomorphism in C is a cofibration.

2. (W1) There is a base point ∗ in C such that the unique morphism ∗ � A is a cofibration for any
A ∈ ob C .

3. (W2) We have a cobase change
A B

C B ∪A C

.

Remark 2. We see that B
∐
C always exists as the pushout B∪∗C and that the cokernel of any i : A� B

exists as B ∪A ∗ along A→ ∗. We call A� B � B�A a cofiber sequence.

Definition. A Waldhausen category C is a category with cofibrations together with a subcategory wC of
morphisms called weak equivalences such that every isomorphism in C is a w.e. and the following “Gluing
axiom” holds.

1. (W3) For any diagram
C A B

C ′ A′ B′

∼ ∼ ∼ ,

the induced map B ∪A C → B′ ∪A′ C
′ is a w.e.

Definition. A Waldhausen category (C , w) is saturated if whenever fg makes sense and is a w.e., then f is
a w.e. iff g is.

Definition. We now introduce the main concept to be generalized.

Let C be a category with cofibrations. Let the extension category S2C have as objects the cofiber sequences
in (C , coC ) and as morphisms the triples (f ′, f, f ′′) such that

X ′ X X ′′

Y ′ Y Y ′′

f ′ f f ′′

commutes. This is pointed at ∗� ∗� ∗.
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Definition. Suppose an arbitrary triple (f ′, f, f ′′) as above has the property that whenever f ′ and f ′′ are
w.e., then so is f . Then we say C is extensional or closed under extensions.

Remark 3. Say that the morphism (f ′, f, f ′′) is a cofibration if f ′, f ′′, and Y ′ ∪X′ X → Y are cofibrations
in C . Say that the same triple is a weak equivalence if f ′, f , and f ′′ are w.e. in C . This makes S2C into a
Waldhausen category.

Definition. Let q ≥ 0. Let the arrow category Ar[q] on [q] have as objects ordered pairs (i, j) with i ≤ j ≤ q
and as morphisms commutative diagrams of the form

i j

i′ j′

≤

≤

≤

≤

.

We view [q] a full subcategory of Ar[q] via the embedding [q]
k 7→(0,k)
−−−−−→ Ar[q].

Remark 4.

1. Any triple i ≤ j ≤ k determines the morphisms (i, j) → (i, k) and (i, k) → (j, k). Conversely, any
morphism in the arrow category is a composition of such triples.

2. Ar[q] ∼= Fun([1], [q]) by identifying each pair (i, j) with the functor satisfying 0 7→ i and 1 7→ j.

Example 1. The category Ar[2] is generated by the commutative diagram

(0, 0) (0, 1) (0, 2)

(1, 1) (1, 2)

(2, 2)

.

Definition. Let C be a category with cofibrations and q ≥ 0. Define SqC as the full subcategory of
Fun(Ar[q],C ) generated by X : Ar[q]→ C such that

1. Xj,j = ∗ for each j ∈ [q].

2. Xi,j � Xi,k � Xj,k is a cofiber sequence for any i < j < k in [q]. Equivalently, if i ≤ j ≤ k in [q],
then the square

Xi,j Xi,k

Xj,j = ∗ Xj,k

is a pushout.

This is pointed at the constant diagram at ∗.
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Remark 5. A generic object in SqC looks like

∗ X1 · · · Xq−1 Xq

∗ · · · Xq−1�X1
Xq�X1

. . .
...

...

∗ Xq�Xq−1

∗

. (∗)

where Xq corresponds to X0,q and Xj�Xi
to Xi,j for any 1 ≤ i ≤ j ≤ q.

Definition. Let (C , coC ) be a category with cofibrations. Let coSqC ⊂ SqC consist of the morphisms
f : X � Y of Ar[q]-shaped diagrams such that for each 1 ≤ j ≤ q we have

X0,j−1 X0,j

Y0,j−1 X0,j ∪X0,j−1 Y0,j−1

Y0,j

f0,j−1 f0,j

.

Proposition 1. If f : X → Y is a cofibration of SqC , then

Xi,j Xi,k

Yi,j Yi,k

fi,j fi,k

for any i ≤ j ≤ k in [q].

Proof. The proof is mostly an easy induction argument along with an application of Lemma 1 above. See
Rognes, Lemma 8.3.12.

Lemma 1. (SqC , coS1C ) is a category with cofibrations.

Proof. First notice that the composite of two cofibrations g ◦ f : X → Y → Z is a cofibration because we
have

X0,j−1 X0,j

Y0,j−1 X0,j ∪X0,j−1 Y0,j−1 Y0,j

Z0,j−1 X0,j ∪X0,j−1 Z0,j−1 Y0,j ∪Y0,j−1 Z0,j−1 Z0,j

f0,j−1

f0,j

g0,j−1

f0,j .
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It’s clear that any isomorphism or initial morphism in SqC is a cofibration.

To see that (W2) is satisfied, let f : X → Y and g : X → Z be morphisms in SqC . It’s easy to verify
that each component fi,j : Xi,j → Yi,j is a cofibration. Thus, each pushout Wi,j := Yi,j ∪Xi,j

Zi,j exists.
These form a functor W : Ar[q] → C . If i < j < k, then we have Wi,j � Wi,k � Wj,k because the left
morphism factors as the composite of two cofibrations

Zi,j Zi,k

Yi,j ∪Xi,j
Zi,j Yi,j ∪Xi,j

Zi,k Yi,k ∪Xi,k
Zi,k

Yi,j ∪Xi,j
Xi,k Yi,k

fi,j∪Id fi,j∪Id

Id∪gi,k Id∪gi,k

.

The fact that colimits commute confirms that Wj,k
∼= Wi,k�Wi,j

Hence W is the pushout of f and g. To verify
that this is a cofibration, we must check that the pushout map W0,j−1 ∪Z0,j−1 Z0,j → W0,j is a cofibration.
But this follows from the pushout square

Y0,j−1 ∪X0,j−1 X0,j Y0,j

Y0,j−1 ∪X0,j−1 Z0,j Y0,j ∪X0,j
Z0,j

.

Definition. Let (C , wC ) be a Waldhausen category. Let wSqC ⊂ SqC consist of the morphisms f : X ∼−→ Y
of Ar[q]-shaped diagrams such that the component f0,j : X0,j → Y0,j is a w.e. in C for each 1 ≤ j ≤ q.

Proposition 2. Let f be a w.e. in SqC . Each component fi,j : Xi,j → Yi,j is a w.e. in C .

Proof. Apply the Gluing axiom to the diagram

X0,j X0,i ∗

Y0,j Y0,i ∗

∼= ∼= = .

Then Xi,j
∼= X0,j ∪X0,i ∗

∼−→ Y0,j ∪Y0,i ∗ ∼= Yi,j , as desired.

Lemma 2. (SqC , wSqC ) is a Waldhausen category.

Definition. Let C be a category with cofibrations. If α : [p]→ [q], then define α∗ : SqC → SpC by

α∗(X : Ar[q]→ C ) = X ◦Ar(α) : Ar[p]→ Ar[q]→ C .

It’s easy to check that this satisfies the two conditions of a diagram in SpC . Moreover, the face maps di are
given by deleting the row Xi,− and the column containing Xi in (∗) of Remark 5 and then reindexing as
necessary. The degeneracy maps si are given by duplicating Xi and then reindexing such that Xi+1,i = 0.
[[Not sure the si work.]]

Proposition 3. Let (C , wC ) be a Waldhausen category. Each functor α∗ : SqC → SpC is exact, so that
(S•C , wS•C ) is a simplicial Waldhausen category.
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Remark 6. The nerve N•wS•C is a bisimplicial set with (p, q)-bisimplices the diagrams of the form

∗ X0
1 X0

2 · · · X0
q

∗ X1
1 X1

2 · · · X1
q

...
...

...

∗ Xp
1 Xp

2 · · · Xp
q

∼ ∼ ∼

∼ ∼ ∼

∼ ∼ ∼

such that Xk
i,j
∼= Xk

j�Xk
i

for every i ≤ j ≤ q and k ∈ [p].

Lemma 3. There is a natural map N•wC ∧ ∆1
• → N•wS•C , which automatically induces a based map

σ : Σ|wC | → |wS•C | of classifying spaces.

Proof. We can treat N•wS•C as the simplicial set [q] 7→ N•wSqC . This defines a right skeletal structure on
N•wS•C .

If q = 0, then wS0C = S0C = ∗, so that N•wS0C = ∗ as well. If q = 1, then wS1C ∼= wC . Thus,
the right 1-skeleton is equal to N•wC ∧ ∆1

•, which in turn must be equal to the image I of the canonical
map ∐

q≤1
N•wSqC ×∆q

• → N•wS•C .

Now, the degeneracy map s0 collapses {∗} × ∆1
•, and the face maps d0 and d1 collapse N•wC × ∂∆1

•.
Therefore, I must equal

N•wC ∧∆1
• = N•wC ×∆1

•
{∗} ×∆1

• ∪N•wC × ∂∆1
•
.

We have defined a natural inclusion map λ : N•wC ∧∆1
• → N•wS•C .

Since ∆1
• is isomorphic to the unit interval and the map λ agrees on the endpoints, we can pass to S1

during the suspension. Hence λ immediately induces the desired map σ. [[This is a tentative explanation
offered by Thomas.]]

Remark 7. The axiom (W3) implies that wC is closed under coproducts, making |wS•C | into an H-space
via the map ∐

: |wS•C | × |wS•C | ∼= |wS•C × wS•C | → |wS•C |.

Definition. Let (C , wC ) be a Waldhausen category. Define the algebraic K-theory space

K(C , w) = Ω|N•wS•C |.

Then we have a right adjoint ι : |wC | → K(C , w) to the based map σ.

Moreover, let F : (C , wC ) → (D , wD) be an exact functor. Then set K(F ) = Ω|wS•F | : K(C , w) →
K(D , w). We have thus defined the algebraic K-theory functor K : Wald→ Top∗.

Remark 8. Recall that any exact category A is a Waldhausen category with cofibrations the admissible
exact sequences and w.e. the isomorphisms. Waldhausen showed that |iS•A | (where i denotes the iso
category) and BQA are homotopy equivalent. Hence our current definition of higher algebraic K-theory
agrees with Quillen’s.
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Example 2. Let R be a ring. Define the algebraic K-theory space of R as

K(R) = K(P(R), i)

where the w.e. i are precisely the injective R-linear maps with projective cokernel and the cofibrations are
precisely the R-linear maps.

Example 3. Assume that C is a small Waldhausen category where wC consists of the isomorphisms in C .
If snC denotes the set of objects of SnC , then we get a simplicial set s•C . Waldhausen showed that the
inclusion |s•C | ↪→ |iS•C | is a homotopy equivalence. This makes Ω|s•C | into a so-called simplicial model
for K(C , w).

Remark 9. Since wS0C = ∗ and every simplex of degree n > 0 is attached to ∗, it follows that the classifying
space |wS•C | is connected. Therefore, we preserve any homotopical information when passing to the loop
space.

Definition. Define the i-th algebraic K-group as Ki(C , w) = πiK(C , w) for each i ≥ 0.

Proposition 4. π1|wS•C | ∼= K0(C , w).

Lemma 4. The group K0(C , w) is generated by [X] for every X ∈ ob C such that [X ′] + [X ′′] = [X] for
every cofiber sequence X ′ � X � X ′′ and [X] = [Y ] for every w.e. X ∼−→ Y .

Proof. We compute π1|N•wS•C | based at the (0, 0)-bisimplex ∗. Notice that |N•wS•C | has a CW structure
[[this is reasonable visually]] with 1-cells the (0, 1)-bisimplices and 2-cells the (0, 2)-bisimplicesX ′ � X � X ′′

and the (1, 1)-bisimplices X ∼−→ Y , which are attached to the 1-cells X and Y . Any cell of dimension n > 2
is irrelevant to computing π1.

Corollary 1. We obtain the functors Ki : Wald→ Top∗ → Ab, called the algebraic K-group functors.

Proof. By Proposition 4, we know that Ki(C , w) = πi+1|wS•C |, which is abelian for i ≥ 1. Moreover, note
that if X ′ � X ′ ∨ X ′′ � X ′′ and X ′′ � X ′ ∨ X ′′ � X ′ are cofiber sequences, then the previous lemma
implies that [X ′] + [X ′′] = [X ′ ∨X ′′] = [X ′′ +X ′]. Hence K0(C , w) is also abelian.

Example 4. Let X be a CW complex and R(X) denote the category of CW complexes Y obtained from
X by attaching at least one cell such that X is a retract of Y . Equip this with cofibrations in the form
of cellular inclusions fixing X and w.e. in the form of homotopy equivalences. This makes R(X) into a
Waldhausen category. If Rf (X) denotes the subcategory of those Y obtained by attaching finitely many
cells, then we write A(X) := K(Rf (X)).

Lemma 5. A0(X) ∼= Z.

Proof. Weibel leaves this proof an an exercise.

Definition. If B is a Waldhausen subcategory of C , then it is cofinal in C is for any X ∈ ob C , there is
some X ′ ∈ ob C such that X

∐
X ′ ∈ ob B.

Theorem 1. Let (B, w) be cofinal in (C , w) and closed under extensions. Assume that K0(B) = K0(C ).
Then wS•B → wS•C is a homotopy equivalence. Therefore, Ki(B) ∼= Ki(C ) for every i ≥ 0.
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