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Abstract

We begin higher Waldhausen K-theory. The main sources for this talk are Chapter 8 of Rognes,
Chapter IV.8 of Weibel, and nLab. For the original development, see Friedhelm Waldhausen’s Algebraic
K-theory of spaces (1985), 318-419.

Remark 1. Let ¥ be a Waldhausen category. Our goal is to construct the K-theory K (%) of € as a based
loop space Y endowed with a loop completion map ¢ : |[w%| — K (%) where w% denotes the subcategory of
weak equivalences. This will produce a function ob % — |w%| — QY. Further, we’ll require of K (%) certain
limit and coherence properties, eventually rendering K (%) the underlying infinite loop space of a spectrum
K(%), called the algebraic K-theory spectrum of €.

Definition. Let @ be a category equipped with a subcategory co(%) of morphisms called cofibrations. The
pair (€, co®) is a category with cofibrations if the following conditions hold.

1. (W0) Every isomorphism in % is a cofibration.

2. (W1) There is a base point % in % such that the unique morphism * — A is a cofibration for any
A€ob¥.

3. (W2) We have a cobase change
A— B

|

C» » BUy C

Remark 2. We see that B[] C always exists as the pushout BU, C and that the cokernel of any i : A — B
exists as BUy4 x along A — x. We call A — B — B/A a cofiber sequence.

Definition. A Waldhausen category € is a category with cofibrations together with a subcategory w% of
morphisms called weak equivalences such that every isomorphism in ¢ is a w.e. and the following “Gluing
axiom” holds.

1. (W3) For any diagram
C+—A——B

C'+— A —— B
the induced map BU4 C — B’ Uy C' is a w.e.

Definition. A Waldhausen category (¢, w) is saturated if whenever fg makes sense and is a w.e., then f is
a w.e. iff g is.

Definition. We now introduce the main concept to be generalized.

Let € be a category with cofibrations. Let the extension category Sa% have as objects the cofiber sequences
in (€, co%) and as morphisms the triples (f’, f, f”) such that

X — X — X"

)

Y —Y —s Y

commutes. This is pointed at * — % — *.



Definition. Suppose an arbitrary triple (f’, f, f”) as above has the property that whenever f’ and f” are
w.e., then so is f. Then we say ¥ is extensional or closed under extensions.

Remark 3. Say that the morphism (f’, f, f) is a cofibration if f/, f”, and Y/ Ux X — Y are cofibrations
in . Say that the same triple is a weak equivalence if f/, f, and f” are w.e. in %. This makes S2% into a
Waldhausen category.

Definition. Let ¢ > 0. Let the arrow category Ar[q] on [g] have as objects ordered pairs (i,7) withi < j <g¢
and as morphisms commutative diagrams of the form

k—(0,k)
We view [q] a full subcategory of Ar[q] via the embedding [¢] —— Ar]q].

Remark 4.

1. Any triple ¢ < j < k determines the morphisms (4,5) — (i, k) and (i,k) — (j, k). Conversely, any
morphism in the arrow category is a composition of such triples.

2. Ar[q] 2 Fun([1], [¢g]) by identifying each pair (7, 7) with the functor satisfying 0+ ¢ and 1 — j.

Example 1. The category Ar[2] is generated by the commutative diagram

(0,0) — (0,1) —— (0,2)

l l

(1,1) —— (1,2) -

|

(2,2)

Definition. Let € be a category with cofibrations and ¢ > 0. Define S;% as the full subcategory of
Fun(Ar[q], ¢) generated by X : Ar[g] — € such that

1. X, ; = * for each j € [q].

2. X;; — Xi, — X, is a cofiber sequence for any ¢ < j < k in [¢]. Equivalently, if ¢ < j < k in [¢],
then the square
Xi,j — Xi,k

| l

Xjj =% r—> Xjk
is a pushout.

This is pointed at the constant diagram at x*.



Remark 5. A generic object in S;% looks like

* X1 Xq,1 —_— Xq

| | 1

q—l/X1 — Xq/X1

S
|

x s Xo/y

|

*

q—1

where X, corresponds to Xy , and Xj/Xi to X;; forany 1 <7 <j <gq.

Definition. Let (€, co%’) be a category with cofibrations. Let coS,;¢ C S,% consist of the morphisms
f: X — Y of Ar[g]-shaped diagrams such that for each 1 < j < ¢ we have

Xo,j—1 > Xo,;

o] |

Yo, 51— Xo; Ux,,_, Yo, -1
yJ

Proposition 1. If f: X — Y is a cofibration of S,%, then

Xi,j — Xi,k

fz\jI Ifi,k

Yij —— Yix

for any ¢ < j7 < k in [q].

Proof. The proof is mostly an easy induction argument along with an application of Lemma 1 above. See
Rognes, Lemma 8.3.12. O

Lemma 1. (S,%,c051%) is a category with cofibrations.
Proof. First notice that the composite of two cofibrations go f : X — Y — Z is a cofibration because we

have

fo.j
Xo,j-1 ———— Xo,;

o] |

Yo,j-1 —— Xo,; Ux,,j—1 Y0,j—1 m———— Yo ; fo.s :
] 1 1

Zo,j—1 > Xo,j Uxo; 1 Zoj—1 = Yo,;Ux; ;1 Zoj—1 +—— Zo,;



It’s clear that any isomorphism or initial morphism in S,% is a cofibration.

To see that (W2) is satisfied, let f : X — Y and g : X — Z be morphisms in S,%. It’s easy to verify
that each component f; ; : X;; — Y;; is a cofibration. Thus, each pushout W; ; :=Y; ; Ux, ,; Zij exists.
These form a functor W : Ar[q] — €. If i < j < k, then we have W, ; — W, — W, because the left
morphism factors as the composite of two cofibrations

Zi,j —_— Zi,k
fi,jUIdJ( J{fi,jUId

YijUxi; Zij r—— YijUx,; Zig — Yir Ux, Zig -

Id Ugi,k]\ Tld Ugi,k

YijUx,, Xig — Yig

The fact that colimits commute confirms that W ;, = W“C/Wz ; Hence W is the pushout of f and g. To verify

that this is a cofibration, we must check that the pushout map Wy ;1 Uz, ;_, Zo; — Wo ; is a cofibration.
But this follows from the pushout square

Y0,j-1 Uxo,;-1 Xoj — Yo,

| |

Y0,j-1 Uxo ;1 20,5 = Yo, Uxo; 2o,

O

Definition. Let (¢, w%) be a Waldhausen category. Let wS,4 C S,% consist of the morphisms f : X — Y
of Ar[g]-shaped diagrams such that the component fy ; : Xo,; — Yy is a w.e. in € for each 1 < j <gq.

Proposition 2. Let f be a w.e. in S;%. Each component f; ; : X; ; = Y; ; is a w.e. in €.

Proof. Apply the Gluing axiom to the diagram

XO,j XO,i *
Yo,j Yo,i *
Then X; ; = Xg; Ux, , * = Yo,; Uyy, * 2 Y55, as desired. O]

Lemma 2. (S,%,wS,%) is a Waldhausen category.

Definition. Let 4 be a category with cofibrations. If « : [p] — [¢], then define a* : S;4 — S,% by
o (X : Ar[g] = €) = X o Ar(a) : Ar[p] — Ar[q] — €.

It’s easy to check that this satisfies the two conditions of a diagram in S,%. Moreover, the face maps d; are
given by deleting the row X; _ and the column containing X; in (x) of Remark 5 and then reindexing as
necessary. The degeneracy maps s; are given by duplicating X; and then reindexing such that X;;;,; = 0.
[[Not sure the s; work.]]

Proposition 3. Let (%, w%) be a Waldhausen category. Each functor o* : S,4 — S,% is exact, so that
(S, wSe%) is a simplicial Waldhausen category.



Remark 6. The nerve NowS,% is a bisimplicial set with (p, ¢)-bisimplices the diagrams of the form

. X0 X9 X0
: X! X! X}

* X7 X¥ Xr

k
such that X{fj = XJ'/X(C for every i < j < ¢ and k € [p].

Lemma 3. There is a natural map New% A AE — NowS,%, which automatically induces a based map
o : BwE| = |wSe€| of classifying spaces.

Proof. We can treat NowSe% as the simplicial set [¢] — NewS,%. This defines a right skeletal structure on
NowS,E.

If ¢ = 0, then wSyE = Sy& = *, so that NowSy% = = as well. If ¢ = 1, then wS1% = w%. Thus,
the right 1-skeleton is equal to New% A Al, which in turn must be equal to the image I of the canonical
map

[ NewS, % x A — NowS,%.

q<1
Now, the degeneracy map so collapses {*} x Al  and the face maps dy and d; collapse Now%é x OAL.
Therefore, I must equal

NowE x Al
1 _ o °
New&NAe = C3 AT U Now® x OAL"

We have defined a natural inclusion map \ : New%é A Al — NewS,%.

Since Al is isomorphic to the unit interval and the map A agrees on the endpoints, we can pass to S*
during the suspension. Hence A immediately induces the desired map o. [[This is a tentative explanation
offered by Thomas.]] O

Remark 7. The axiom (W3) implies that w% is closed under coproducts, making |wS,%| into an H-space
via the map

H DwSeE| X (WS | = [WSeC X WSeE| — |WwSeE .
Definition. Let (¢, w%) be a Waldhausen category. Define the algebraic K-theory space
K(€,w) = QNewSe%|.
Then we have a right adjoint ¢ : |wé| — K(%,w) to the based map o.

Moreover, let F' : (€, w%) — (2,wP) be an exact functor. Then set K(F) = QwS.F| : K(¢,w) —
K(2,w). We have thus defined the algebraic K-theory functor K : Wald — Top..

Remark 8. Recall that any exact category &7 is a Waldhausen category with cofibrations the admissible
exact sequences and w.e. the isomorphisms. Waldhausen showed that |iSe/| (where ¢ denotes the iso
category) and BQ.«/ are homotopy equivalent. Hence our current definition of higher algebraic K-theory
agrees with Quillen’s.



Example 2. Let R be a ring. Define the algebraic K-theory space of R as

where the w.e. ¢ are precisely the injective R-linear maps with projective cokernel and the cofibrations are
precisely the R-linear maps.

Example 3. Assume that ¥’is a small Waldhausen category where w% consists of the isomorphisms in 4.
If s,% denotes the set of objects of S,,%, then we get a simplicial set s,%. Waldhausen showed that the
inclusion [s¢%| < [iSe%| is a homotopy equivalence. This makes |s%’| into a so-called simplicial model
for K(%,w).

Remark 9. Since wSy% = * and every simplex of degree n > 0 is attached to x*, it follows that the classifying
space |wS,%| is connected. Therefore, we preserve any homotopical information when passing to the loop
space.

Definition. Define the i-th algebraic K-group as K;(€¢,w) = m; K(%€,w) for each i > 0.
Proposition 4. m1|wS.%| = Ko(€,w).

Lemma 4. The group Ky(%,w) is generated by [X] for every X € ob¥% such that [X'] + [X"] = [X] for
every cofiber sequence X'~ X — X" and [X] = [Y] for every w.e. X "5 Y.

Proof. We compute 71| NowSe%| based at the (0, 0)-bisimplex *. Notice that |[NewSe%| has a CW structure
[[this is reasonable visually]] with 1-cells the (0, 1)-bisimplices and 2-cells the (0, 2)-bisimplices X' — X — X"
and the (1, 1)-bisimplices X =+ Y, which are attached to the 1-cells X and Y. Any cell of dimension n > 2
is irrelevant to computing 7. O

Corollary 1. We obtain the functors K; : Wald — Top, — Ab, called the algebraic K-group functors.

Proof. By Proposition 4, we know that K;(¢,w) = m;1|wSe€|, which is abelian for ¢ > 1. Moreover, note
that if X/ — X'V X" — X" and X" — X'V X" — X' are cofiber sequences, then the previous lemma
implies that [X'] + [X"] = [X'V X"] = [X" 4+ X']. Hence Ky(%,w) is also abelian. O

Example 4. Let X be a CW complex and R(X) denote the category of CW complexes Y obtained from
X by attaching at least one cell such that X is a retract of Y. Equip this with cofibrations in the form
of cellular inclusions fixing X and w.e. in the form of homotopy equivalences. This makes R(X) into a
Waldhausen category. If R;(X) denotes the subcategory of those Y obtained by attaching finitely many
cells, then we write A(X) := K(Rs(X)).

Lemma 5. Ay(X) = Z.
Proof. Weibel leaves this proof an an exercise. O

Definition. If & is a Waldhausen subcategory of %, then it is cofinal in € is for any X € ob %, there is
some X’ € ob@ such that X [[ X’ € ob A.

Theorem 1. Let (£, w) be cofinal in (%, w) and closed under extensions. Assume that Ko(B) = Ky(%).
Then wSe# — wS,% is a homotopy equivalence. Therefore, K;(#) = K;(€) for every i > 0.



